Properties

Label 3840.fe.24.DX
Order $ 2^{5} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.D_4$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(6,7)(14,15), (1,5,3,2,4), (2,3)(4,5)(8,9)(12,13), (2,4,3,5)(6,7)(8,12,9,13)(10,11), (1,4,5,3)(6,15)(7,14)(8,13,9,12), (8,9)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^3:F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times F_5$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\operatorname{res}(S)$$C_2^4\times F_5$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{10}.D_4^2$
Normal closure:$C_2\times F_5\times S_4$
Core:$D_{10}$
Minimal over-subgroups:$D_{10}.C_2^4$$(C_4\times D_{10}):C_4$$D_{10}.C_2^4$$(C_2\times D_{20}):C_4$$D_{10}.C_2^4$
Maximal under-subgroups:$C_4\times D_{10}$$C_2^2\times F_5$$C_2^2\times F_5$$C_{20}:C_4$$C_2^2.D_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$