Properties

Label 3840.fe.20.M
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.\GL(2,\mathbb{Z}/4)$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(6,7)(14,15), (1,5)(3,4)(8,9)(12,13), (6,7)(10,11), (1,5)(3,4)(6,7)(10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^3:F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^6.D_6$
Normal closure:$D_5.\GL(2,\mathbb{Z}/4)$
Core:$C_2^2\times A_4$
Minimal over-subgroups:$D_5.\GL(2,\mathbb{Z}/4)$$C_2^2.\GL(2,\mathbb{Z}/4)$$C_2^5.D_6$
Maximal under-subgroups:$C_2^3\times A_4$$C_2^2.S_4$$C_2^4:C_4$$C_6.D_4$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$