Properties

Label 3840.bf.80.U
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_2^3$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 16 & 5 \\ 15 & 11 \end{array}\right), \left(\begin{array}{rr} 17 & 10 \\ 5 & 11 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $S_3\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^4.D_6$
Normal closure:$C_2^2\times A_4:F_5$
Core:$C_2^2$
Minimal over-subgroups:$D_{10}.D_6$$C_2^3.S_4$$C_2^3.D_6$$C_2^2.D_{12}$$C_6:C_4^2$
Maximal under-subgroups:$C_6:C_4$$C_2^2\times C_6$$C_6:C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$