Properties

Label 3840.bf.64.D
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{10}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 16 & 5 \\ 15 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_6:D_4\times F_5$
Normal closure:$A_4\times D_{10}$
Core:$D_{10}$
Minimal over-subgroups:$A_4\times D_{10}$$C_6\times D_{10}$$S_3\times D_{10}$$C_{30}:C_4$$C_6\times D_{10}$
Maximal under-subgroups:$C_{30}$$C_3\times D_5$$C_3\times D_5$$D_{10}$$C_2\times C_6$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$F_5\times \GL(2,\mathbb{Z}/4)$