Properties

Label 3840.bf.480.HO
Order $ 2^{3} $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 13 & 0 \\ 15 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(512\)\(\medspace = 2^{9} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_4^2$
Normalizer:$C_2^3:C_4^2$
Normal closure:$D_{10}.S_4$
Core:$C_1$
Minimal over-subgroups:$C_2\times F_5$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2:C_4$$C_2^2:C_4$$C_2^2:C_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$