Properties

Label 3840.bf.4.B
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times \GL(2,\mathbb{Z}/4)$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 11 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 6 & 15 \\ 15 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $A_4.C_2^5.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Complements:$C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$D_{10}\times \GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^4:C_{30}$$C_2\times C_{10}\times S_4$$C_2\times A_4:C_{20}$$C_5\times \GL(2,\mathbb{Z}/4)$$C_2^5:C_{10}$$C_{30}:D_4$$C_2\times \GL(2,\mathbb{Z}/4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$