Subgroup ($H$) information
| Description: | $D_{10}$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
19 & 0 \\
0 & 11
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $\GL(2,\mathbb{Z}/4):C_2$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
| Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times A_4).C_2^4.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $\operatorname{res}(S)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $W$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $F_5\times \GL(2,\mathbb{Z}/4)$ |