Properties

Label 345600.f.6.A
Order $ 2^{8} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times S_5^2$
Order: \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(11,12)(13,14), (1,3)(2,4)(11,12)(13,14), (1,7,5)(2,4,10,8,6)(3,9)(11,13)(12,14), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), nonabelian, nonsolvable, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $A_4\times S_5\wr C_2$
Order: \(345600\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $A_5^2.C_2\wr D_6$, of order \(2764800\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5^{2} \)
$W$$S_5^2:C_6$, of order \(86400\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$A_4\times S_5\wr C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4\times S_5\wr C_2$