Properties

Label 320.976.80.a1.a1
Order $ 2^{2} $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(2\)
Generators: $b^{4}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), stem (hence abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_{20}.\SD_{16}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2^4.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
Outer Automorphisms: $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(2048\)\(\medspace = 2^{11} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{20}.\SD_{16}$
Normalizer:$C_{20}.\SD_{16}$
Minimal over-subgroups:$C_2\times C_{10}$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$$C_2$

Other information

Möbius function$0$
Projective image$D_4\times C_{10}$