Properties

Label 320.572.8.a1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{2}, c, d^{2}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^4.D_{10}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9\times F_5$
$\operatorname{Aut}(H)$ $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2560\)\(\medspace = 2^{9} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3:C_{20}$
Normalizer:$C_2^4.D_{10}$
Minimal over-subgroups:$C_2^3\times C_{10}$$C_2^2\times C_{20}$$C_2^2\times C_{20}$$C_2^2.D_{10}$$C_2^2.D_{10}$$C_2^2.D_{10}$$C_2^2.D_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2^3$

Other information

Möbius function$-8$
Projective image$C_2\times D_{10}$