Properties

Label 320.1540.2.e1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}.D_4$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ad^{5}, d^{10}, cd^{5}, d^{4}, b, c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2:C_2^2\times C_5$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2^2$
$\operatorname{Aut}(H)$ $C_2^3.C_2^6$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3.C_2^6$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_4^2:C_2^2\times C_5$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_4^2:C_2^2\times C_5$
Maximal under-subgroups:$C_2^2:C_{20}$$C_2^2:C_{20}$$C_2^2\times C_{20}$$C_4:C_{20}$$C_4:C_{20}$$Q_8\times C_{10}$$C_4:C_{20}$$C_2^2:Q_8$

Other information

Möbius function$-1$
Projective image$C_2^4$