Properties

Label 320.1100.80.o1
Order $ 2^{2} $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(2\)
Generators: $a^{2}, bd^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_{10}.C_4^2$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times C_2^6:D_4$, of order \(10240\)\(\medspace = 2^{11} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1024\)\(\medspace = 2^{10} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2.C_4^2$
Normalizer:$C_2^2.C_4^2$
Normal closure:$D_{10}$
Core:$C_2$
Minimal over-subgroups:$D_{10}$$C_2^3$$C_2^3$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_{10}.D_4$