Subgroup ($H$) information
| Description: | $D_5$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Index: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$a^{2}d^{10}, d^{4}$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $D_{10}.C_4^2$ |
| Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2.D_4$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \) |
| Outer Automorphisms: | $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times C_2^6:D_4$, of order \(10240\)\(\medspace = 2^{11} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $\operatorname{res}(S)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(256\)\(\medspace = 2^{8} \) |
| $W$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
| Centralizer: | $C_2^2\times C_4$ | |||
| Normalizer: | $D_{10}.C_4^2$ | |||
| Minimal over-subgroups: | $D_{10}$ | $D_{10}$ | $D_{10}$ | $D_{10}$ |
| Maximal under-subgroups: | $C_5$ | $C_2$ |
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $D_{10}.C_4^2$ |