Properties

Label 31104.mi.48.b1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^3:A_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,2)(3,4)(5,6)(7,14,12)(8,15,10)(9,13,11), (7,12,15,8,11,13,9,10,14), (10,12,11), (7,8)(13,15), (13,14,15), (10,12)(13,15), (7,8,9)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_3^3:S_4^2$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2\times S_4$
Normalizer:$C_2\times C_3^3:S_4^2$
Complements:$C_2\times S_4$ $C_2\times S_4$ $C_2\times S_4$
Minimal over-subgroups:$C_2\times C_3\wr A_4$$C_2\times C_3^3:S_4$$C_2^2\times C_3^3:A_4$$C_2^2\times C_3^3:A_4$$C_2\times C_3^3:S_4$$C_2\times C_3^3:S_4$
Maximal under-subgroups:$C_3^3:A_4$$C_6:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4^2$