Properties

Label 30720.ev.4.E
Order $ 2^{9} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.(F_5\times S_4)$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3)(2,5)(4,9)(6,10)(7,12)(8,14)(11,16)(13,15), (18,20,19,21), (4,9)(6,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $F_5\times C_2^6:S_4$
Order: \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^6.C_{15}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $(C_5^3\times C_{10}).Q_8$, of order \(1105920\)\(\medspace = 2^{13} \cdot 3^{3} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^4.(F_5\times S_4)$
Normal closure:$F_5\times C_2^6:S_4$
Core:$F_5\times C_2^6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed