Properties

Label 2928200.x.14641.a1.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 11^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.D_{10}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(14641\)\(\medspace = 11^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{2}d^{9}e^{5}f^{6}g^{5}, a^{2}c^{4}d^{48}e^{9}fg^{7}, cd^{33}e^{3}f^{5}g^{5}, be^{3}f^{5}, d^{11}e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^4:(C_{10}.D_{10})$
Order: \(2928200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^4.C_5^2.C_2^3.C_5.C_2^3$
$\operatorname{Aut}(H)$ $F_5^2:D_4$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$14641$
Möbius function not computed
Projective image not computed