Properties

Label 28800.ci.7200.a1
Order $ 2^{2} $
Index $ 2^{5} \cdot 3^{2} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(2\)
Generators: $\langle(2,4)(3,5), (2,3)(4,5)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_5$
Order: \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3\times F_5\times S_5$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_2^2\times F_5\times S_5$
Normalizer:$A_4\times F_5\times S_5$
Complements:$C_3\times F_5\times S_5$
Minimal over-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$A_4$$C_2\times C_6$$A_4$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_4\times F_5\times S_5$