Properties

Label 28800.ci.576.a1
Order $ 2 \cdot 5^{2} $
Index $ 2^{6} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{10}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(2,4)(3,5), (6,7,10,8,9), (1,13,11,14,12)(2,4)(3,5)(6,7,10,8,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_5$
Order: \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_4^2$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_2^2\times F_5^2$
Normal closure:$C_2\times C_{10}\times A_5$
Core:$C_5$
Minimal over-subgroups:$C_5\times D_{10}$$C_5\times D_{10}$$C_5\times D_{10}$$C_5\times D_{10}$$C_5:D_{10}$$C_5:D_{10}$$C_{10}^2$
Maximal under-subgroups:$C_5^2$$C_{10}$$C_{10}$$C_{10}$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_4\times F_5\times S_5$