Subgroup ($H$) information
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(2,4)(3,5), (2,3)(4,5), (2,5)(3,4)(6,8)(7,10)(13,14)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $A_4\times F_5\times S_5$ |
| Order: | \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $W$ | $C_3$, of order \(3\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $50$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $A_4\times F_5\times S_5$ |