Properties

Label 28800.ci.3600.bj1
Order $ 2^{3} $
Index $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(2\)
Generators: $\langle(2,4)(3,5), (2,3)(4,5), (6,7)(9,10)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_5$
Order: \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_4\times C_2^2\times S_5$
Normalizer:$C_4\times A_4\times S_5$
Normal closure:$C_2\times D_{10}$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times D_{10}$$C_2^2\times C_{10}$$C_2\times A_4$$C_2^2\times C_6$$C_2\times A_4$$C_2^4$$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-120$
Projective image$A_4\times F_5\times S_5$