Subgroup ($H$) information
| Description: | $C_2^2\times F_5\times S_5$ |
| Order: | \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| Index: | \(3\) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(2,4)(3,5), (2,3)(4,5), (6,7,10,8,9), (2,4)(3,5)(6,10,7,9), (6,7)(9,10), (1,11)(2,4)(3,5)(6,9,7,10), (1,12,14)(2,3)(4,5)(7,8,9,10)(11,13)\rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.
Ambient group ($G$) information
| Description: | $A_4\times F_5\times S_5$ |
| Order: | \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_3$ |
| Order: | \(3\) |
| Exponent: | \(3\) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $F_5.S_5\times C_2^2:S_4$ |
| $W$ | $C_3\times F_5\times S_5$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $A_4\times F_5\times S_5$ |