Properties

Label 28800.ci.3.a1
Order $ 2^{7} \cdot 3 \cdot 5^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times F_5\times S_5$
Order: \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
Index: \(3\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,4)(3,5), (2,3)(4,5), (6,7,10,8,9), (2,4)(3,5)(6,10,7,9), (6,7)(9,10), (1,11)(2,4)(3,5)(6,9,7,10), (1,12,14)(2,3)(4,5)(7,8,9,10)(11,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_5$
Order: \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5.S_5\times C_2^2:S_4$
$W$$C_3\times F_5\times S_5$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$A_4\times F_5\times S_5$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$A_4\times F_5\times S_5$
Maximal under-subgroups:$C_2\times D_{10}\times S_5$$C_2^2\times F_5\times A_5$$C_2\times D_{10}.S_5$$C_2\times F_5\times S_5$$C_2\times F_5\times S_5$$C_2\times F_5\times S_5$$C_2\times F_5\times S_5$$C_4\times C_2^2\times S_5$$C_2^2\times F_5\times S_4$$C_2^2\times F_5^2$$C_2^2\times D_6\times F_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$A_4\times F_5\times S_5$