Subgroup ($H$) information
| Description: | $C_5\times D_{10}$ |
| Order: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Index: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\langle(2,4)(3,5), (6,7,10,8,9), (1,13,11,14,12)(2,4)(3,5)(7,9)(8,10), (6,7)(9,10)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $A_4\times F_5\times S_5$ |
| Order: | \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $W$ | $C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $18$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $A_4\times F_5\times S_5$ |