Properties

Label 279936000.bd.405._.A
Order $ 2^{10} \cdot 3^{3} \cdot 5^{2} $
Index $ 3^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4\times S_5\wr C_2$
Order: \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
Index: \(405\)\(\medspace = 3^{4} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(4,14)(7,8), (1,3)(4,13,8,15,14,6)(7,11)(9,10)(16,21)(17,24)(18,22)(19,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $A_5^3.S_3\wr S_3$
Order: \(279936000\)\(\medspace = 2^{10} \cdot 3^{7} \cdot 5^{3} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_5^3.S_3^3:D_6$, of order \(559872000\)\(\medspace = 2^{11} \cdot 3^{7} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$405$
Möbius function not computed
Projective image not computed