Properties

Label 256.6571.4.g1.a1
Order $ 2^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a^{2}cd^{4}, d, b^{3}d^{6}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.(C_2^2\times C_4)$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^5.D_4^2$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3.D_4^2$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3:C_4$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2.(C_2^2\times C_4)$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_4^2.D_4$
Maximal under-subgroups:$C_4:D_4$$C_4:Q_8$$C_4\times C_8$$C_2\times \SD_{16}$$C_2\times \SD_{16}$

Other information

Möbius function$0$
Projective image$C_2^4.D_4$