Properties

Label 256.30638.2.s1
Order $ 2^{7} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.D_4^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 9 & 28 \\ 4 & 9 \end{array}\right), \left(\begin{array}{rr} 0 & 25 \\ 41 & 0 \end{array}\right), \left(\begin{array}{rr} 32 & 39 \\ 33 & 8 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 8 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4.D_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ $C_2^{12}$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4.D_4^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_4.D_4^2$
Maximal under-subgroups:$C_2^3:D_4$$C_2^3:D_4$$C_2^3.D_4$$C_2^3:D_4$$C_2^3.D_4$$C_4^2:C_2^2$$C_2^3.D_4$$C_2^3:D_4$$C_2^3.C_2^3$$C_2^3.D_4$$C_2^3:Q_8$$C_2^3.D_4$$C_2^3:Q_8$$C_2^3.Q_8$$C_2^3.C_2^3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed