Properties

Label 256.29080.4.w1
Order $ 2^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 5 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 7 & 6 \\ 6 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 11 \\ 10 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^2:D_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.(C_2^2\times S_4)$, of order \(393216\)\(\medspace = 2^{17} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^9.S_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^{12}$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^2:D_4^2$
Complements:$C_2^2$
Minimal over-subgroups:$C_2^3\wr C_2$$C_2^3.C_2^4$
Maximal under-subgroups:$C_2^3:C_4$$C_2^3:C_4$$C_2^5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_2^5$