Properties

Label 2400.eg.60.p1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(6,7,8,10,9), (2,5)(3,4)(6,9,10,8,7), (2,3)(4,5), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_5:D_4\times A_5$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$A_4\times C_5:D_4$
Normal closure:$C_{10}\times A_5$
Core:$C_{10}$
Minimal over-subgroups:$C_{10}\times A_4$$C_2^3\times C_{10}$$C_2^2\times D_{10}$$C_2^2.D_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2^3$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$0$
Projective image$D_{10}\times A_5$