Subgroup ($H$) information
| Description: | $D_4\times A_5$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Index: | \(5\) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(11,12)(13,14), (1,2)(3,4)(6,7)(8,9)(12,14), (6,7)(8,9)(12,14), (1,5,3)(6,7)(8,9)(11,13), (11,13)(12,14)\rangle$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, and nonsolvable.
Ambient group ($G$) information
| Description: | $C_5:D_4\times A_5$ |
| Order: | \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $D_4\times S_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2^2\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_2^2\times A_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $5$ |
| Möbius function | $-1$ |
| Projective image | $D_{10}\times A_5$ |