Properties

Label 2400.eg.5.a1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times A_5$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(5\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(11,12)(13,14), (1,2)(3,4)(6,7)(8,9)(12,14), (6,7)(8,9)(12,14), (1,5,3)(6,7)(8,9)(11,13), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_5:D_4\times A_5$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $D_4\times S_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times A_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4\times A_5$
Normal closure:$C_5:D_4\times A_5$
Core:$C_2^2\times A_5$
Minimal over-subgroups:$C_5:D_4\times A_5$
Maximal under-subgroups:$C_2^2\times A_5$$C_2^2\times A_5$$C_4\times A_5$$D_4\times A_4$$D_4\times D_5$$S_3\times D_4$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$D_{10}\times A_5$