Properties

Label 2400.eg.20.h1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times A_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(6,7,8,10,9), (2,5)(3,4)(6,9,10,8,7), (2,3)(4,5), (2,4,5)(6,9,10,8,7), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5:D_4\times A_5$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$A_4\times C_5:D_4$
Normal closure:$C_{10}\times A_5$
Core:$C_{10}$
Minimal over-subgroups:$C_{10}\times A_5$$C_2^3:C_{30}$$A_4\times D_{10}$$A_4\times C_5:C_4$
Maximal under-subgroups:$C_5\times A_4$$C_2^2\times C_{10}$$C_{30}$$C_2\times A_4$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-2$
Projective image$D_{10}\times A_5$