Subgroup ($H$) information
| Description: | $C_5:D_4\times A_5$ |
| Order: | \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Index: | $1$ |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(7,9)(8,10)(12,14), (11,12)(13,14), (6,7,8,10,9), (1,2)(3,4)(6,7)(8,9)(12,14), (1,5,3)(6,7)(8,9)(11,13), (11,13)(12,14)\rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.
Ambient group ($G$) information
| Description: | $C_5:D_4\times A_5$ |
| Order: | \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| $W$ | $D_{10}\times A_5$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $D_{10}\times A_5$ |