Properties

Label 2400.eg.1.a1.a1
Order $ 2^{5} \cdot 3 \cdot 5^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_4\times A_5$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(7,9)(8,10)(12,14), (11,12)(13,14), (6,7,8,10,9), (1,2)(3,4)(6,7)(8,9)(12,14), (1,5,3)(6,7)(8,9)(11,13), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.

Ambient group ($G$) information

Description: $C_5:D_4\times A_5$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2^2\times F_5\times S_5$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$W$$D_{10}\times A_5$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_5:D_4\times A_5$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_{10}\times A_5$$D_{10}\times A_5$$C_5:C_4\times A_5$$D_4\times A_5$$A_4\times C_5:D_4$$D_{10}:D_{10}$$D_6:D_{10}$

Other information

Möbius function$1$
Projective image$D_{10}\times A_5$