Properties

Label 2400.bt.20.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5)$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 2 & 3 & 1 & 1 \\ 0 & 4 & 0 & 2 \\ 1 & 1 & 2 & 3 \\ 0 & 2 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 3 & 3 & 4 \\ 2 & 2 & 2 & 2 \\ 0 & 4 & 1 & 1 \\ 3 & 4 & 3 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and quasisimple (hence nonsolvable and perfect).

Ambient group ($G$) information

Description: $\SL(2,5):D_{10}$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{10}:C_4$
Normalizer:$\SL(2,5):D_{10}$
Complements:$D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$
Minimal over-subgroups:$C_5\times \SL(2,5)$$C_2\times \SL(2,5)$$\SL(2,5):C_2$$\SL(2,5):C_2$
Maximal under-subgroups:$\SL(2,3)$$C_5:C_4$$C_3:C_4$

Other information

Möbius function$-10$
Projective image$D_{10}\times A_5$