Properties

Label 2400.bt.2.b1.b1
Order $ 2^{4} \cdot 3 \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5):D_5$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 3 & 0 & 3 & 3 \\ 2 & 1 & 3 & 3 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 3 & 4 \end{array}\right), \left(\begin{array}{rrrr} 2 & 4 & 1 & 0 \\ 1 & 2 & 4 & 3 \\ 2 & 0 & 1 & 3 \\ 1 & 4 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 0 & 2 \\ 1 & 0 & 4 & 0 \\ 1 & 2 & 0 & 2 \\ 1 & 1 & 4 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 4 & 3 \\ 0 & 1 & 3 & 0 \\ 4 & 3 & 3 & 3 \\ 2 & 0 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\SL(2,5):D_{10}$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
$\operatorname{res}(S)$$C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_5\times A_5$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\SL(2,5):D_{10}$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$\SL(2,5):D_{10}$
Maximal under-subgroups:$C_5\times \SL(2,5)$$\SL(2,3):D_5$$\SL(2,5):C_2$$C_{10}.D_{10}$$D_{15}:C_4$
Autjugate subgroups:2400.bt.2.b1.a1

Other information

Möbius function$-1$
Projective image$D_{10}\times A_5$