Properties

Label 2400.bt.120.o1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:C_4$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 0 & 3 & 4 & 3 \\ 2 & 0 & 2 & 4 \\ 1 & 2 & 2 & 2 \\ 3 & 1 & 3 & 2 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 3 & 1 & 2 & 2 \\ 2 & 1 & 2 & 3 \\ 4 & 1 & 0 & 0 \\ 3 & 0 & 3 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\SL(2,5):D_{10}$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_{10}:C_4$
Normalizer:$C_{10}^2.C_2^2$
Normal closure:$\SL(2,5)$
Core:$C_2$
Minimal over-subgroups:$\SL(2,5)$$C_5:C_{20}$$C_{10}:C_4$$C_4\times D_5$$C_4\times D_5$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$10$
Projective image$D_{10}\times A_5$