Properties

Label 2400.bt.1.a1.a1
Order $ 2^{5} \cdot 3 \cdot 5^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5):D_{10}$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 3 & 1 & 4 & 0 \\ 4 & 3 & 1 & 2 \\ 3 & 0 & 4 & 2 \\ 4 & 1 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 3 & 3 \\ 2 & 1 & 3 & 3 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 3 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 0 & 2 \\ 1 & 0 & 4 & 0 \\ 1 & 2 & 0 & 2 \\ 1 & 1 & 4 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 4 & 3 \\ 0 & 1 & 3 & 0 \\ 4 & 3 & 3 & 3 \\ 2 & 0 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.

Ambient group ($G$) information

Description: $\SL(2,5):D_{10}$
Order: \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \)
$W$$D_5\times A_5$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\SL(2,5):D_{10}$
Complements:$C_1$
Maximal under-subgroups:$C_{10}\times \SL(2,5)$$\SL(2,5):D_5$$\SL(2,5):D_5$$\SL(2,3):D_{10}$$\SL(2,5):C_2^2$$C_{10}^2.C_2^2$$D_{30}:C_4$

Other information

Möbius function$1$
Projective image$D_5\times A_5$