Subgroup ($H$) information
| Description: | $\SL(2,5):D_{10}$ |
| Order: | \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Index: | $1$ |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right), \left(\begin{array}{rrrr}
3 & 1 & 4 & 0 \\
4 & 3 & 1 & 2 \\
3 & 0 & 4 & 2 \\
4 & 1 & 1 & 4
\end{array}\right), \left(\begin{array}{rrrr}
3 & 0 & 3 & 3 \\
2 & 1 & 3 & 3 \\
0 & 0 & 1 & 0 \\
2 & 0 & 3 & 4
\end{array}\right), \left(\begin{array}{rrrr}
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right), \left(\begin{array}{rrrr}
1 & 3 & 0 & 2 \\
1 & 0 & 4 & 0 \\
1 & 2 & 0 & 2 \\
1 & 1 & 4 & 4
\end{array}\right), \left(\begin{array}{rrrr}
0 & 3 & 4 & 3 \\
0 & 1 & 3 & 0 \\
4 & 3 & 3 & 3 \\
2 & 0 & 0 & 4
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.
Ambient group ($G$) information
| Description: | $\SL(2,5):D_{10}$ |
| Order: | \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $D_4\times F_5\times S_5$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \) |
| $W$ | $D_5\times A_5$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $D_5\times A_5$ |