Subgroup ($H$) information
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a^{4}, b^{20}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.
Ambient group ($G$) information
| Description: | $C_{10}:C_{24}$ |
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{10}:C_4$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{10}:C_{24}$ | |||
| Normalizer: | $C_{10}:C_{24}$ | |||
| Minimal over-subgroups: | $C_{30}$ | $C_2\times C_6$ | $C_{12}$ | $C_{12}$ |
| Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{10}:C_4$ |