Properties

Label 230400.co.4._.O
Order $ 2^{8} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_5^2:C_2^2$
Order: \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(11,12)(13,14), (1,2)(13,14), (1,9,3,5,8,4)(2,7,10,6)(11,13,12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, nonsolvable, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $(C_2\times S_5^2).C_2^3$
Order: \(230400\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^2.A_5^2.D_4$
$\operatorname{Aut}(H)$ $C_2^2\times S_5\wr C_2$, of order \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed