Subgroup ($H$) information
| Description: | $C_2^2\times F_5\times S_5$ |
| Order: | \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(12,14)(13,18), (2,10,3,8)(11,15)(12,18)(13,14)(16,17), (3,8,10,9)(4,7) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
| Description: | $(C_2\times S_5^2).C_2^3$ |
| Order: | \(230400\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3.C_2^4.A_5^2.D_4$ |
| $\operatorname{Aut}(H)$ | $F_5.S_5\times C_2^2:S_4$ |
| $W$ | $C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \) |
Related subgroups
| Centralizer: | $C_2^2$ |
| Normalizer: | $(C_2\times C_4:F_5).S_5$ |
| Normal closure: | $C_2^2\times S_5^2$ |
| Core: | $C_2^2$ |
Other information
| Number of subgroups in this autjugacy class | $24$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_2^2\times S_5\wr C_2$ |