Properties

Label 230400.bj.24.G
Order $ 2^{7} \cdot 3 \cdot 5^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times F_5\times S_5$
Order: \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,10,2,9)(3,7)(11,12)(13,14)(15,16), (1,2,10,6,9)(3,4)(5,7,8)(11,13)(12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_2\times S_5^2:D_4$
Order: \(230400\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^3.A_5^2.D_4$
$\operatorname{Aut}(H)$ $F_5.S_5\times C_2^2:S_4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$(C_2^3\times F_5).S_5$
Normal closure:$C_2^3\times A_5.S_5.C_2$
Core:$C_2^2$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2^2\times S_5\wr C_2$