Properties

Label 230400.bd.24.C
Order $ 2^{7} \cdot 3 \cdot 5^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times F_5\times S_5$
Order: \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,9)(6,7)(11,17)(13,18), (11,17)(12,16)(13,18)(14,15), (11,17)(13,18), (2,6,9,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $(C_2^2\times S_5^2).C_4$
Order: \(230400\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_4).A_5^2.D_4$
$\operatorname{Aut}(H)$ $F_5.S_5\times C_2^2:S_4$
$W$$C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times F_5):C_4.S_5$
Normal closure:$C_2^2\times S_5^2$
Core:$C_2^2$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2.A_5^2.D_4$