Subgroup ($H$) information
| Description: | $C_4.\GL(2,\mathbb{Z}/4)$ |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\langle(1,2)(8,15)(9,10)(11,13)(12,14), (4,6)(5,7), (4,7)(5,6), (4,7,5), (4,5,6) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $S_3\times D_8:S_4$ |
| Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $A_4.C_2^5.C_2^3$ |
| $\operatorname{res}(S)$ | $\GL(2,\mathbb{Z}/4):C_2^3$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $\GL(2,\mathbb{Z}/4):D_6$ |