Properties

Label 224.166.7.a1.a1
Order $ 2^{5} $
Index $ 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(7\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 280 \end{array}\right), \left(\begin{array}{rr} 280 & 0 \\ 0 & 280 \end{array}\right), \left(\begin{array}{rr} 228 & 0 \\ 0 & 228 \end{array}\right), \left(\begin{array}{rr} 192 & 0 \\ 0 & 192 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\OD_{16}:C_{14}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_7$
Order: \(7\)
Exponent: \(7\)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6\times S_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{56}$
Normalizer:$\OD_{16}:C_{14}$
Complements:$C_7$
Minimal over-subgroups:$\OD_{16}:C_{14}$
Maximal under-subgroups:$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$\OD_{16}$$\OD_{16}$$\OD_{16}$$D_4:C_2$

Other information

Möbius function$-1$
Projective image$C_2\times C_{14}$