Properties

Label 21504.b.14.c1
Order $ 2^{9} \cdot 3 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6:S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(17,18)(19,21)(20,22)(23,24), (1,5)(2,9)(3,10)(4,12)(6,14)(7,11)(8,15)(13,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2^7:\PSL(2,7)$
Order: \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2^6.S_4^2$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$W$$C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^4.C_2^4.D_6$
Normal closure:$C_2^7:\PSL(2,7)$
Core:$C_2^4$
Minimal over-subgroups:$C_2^4.C_2^4.D_6$
Maximal under-subgroups:$C_2^6:A_4$$C_2^6:D_4$$C_2^4:S_4$$C_2^4:S_4$$C_2^2\wr S_3$$C_2^4:S_4$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^6:\GL(3,2)$