Subgroup ($H$) information
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(10,14,13), (9,11,12)(10,14,13)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $(S_3^2\times A_4^2):C_2^2$ |
| Order: | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times A_4^2:D_4$ |
| Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $A_4^2.C_2^4.C_2^3$ |
| Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.A_4^2.C_2.C_2^6$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
| Centralizer: | $C_2^4.C_3^4.C_2$ | ||
| Normalizer: | $(S_3^2\times A_4^2):C_2^2$ | ||
| Complements: | $C_2\times A_4^2:D_4$ | ||
| Minimal over-subgroups: | $C_3\times C_6$ | $C_3:S_3$ | $C_3:S_3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $(S_3^2\times A_4^2):C_2^2$ |