Properties

Label 1944.950.3.b1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^2:D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(3\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, b^{6}, c, b^{9}, d^{6}, d^{9}, b^{8}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $(C_3\times C_{18}):D_{18}$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^4.C_3.C_2^3$
$\card{\operatorname{res}(S)}$\(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^2:D_{18}$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^2:D_{18}$
Normal closure:$(C_3\times C_{18}):D_{18}$
Core:$C_3^2:D_{18}$
Minimal over-subgroups:$(C_3\times C_{18}):D_{18}$
Maximal under-subgroups:$C_3^2:D_{18}$$C_2\times C_3^2:C_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$S_3\times D_{18}$$C_6:S_3^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3^3.S_3^2$