Subgroup ($H$) information
| Description: | $C_3\times \He_3$ |
| Order: | \(81\)\(\medspace = 3^{4} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(3\) |
| Generators: |
$a^{2}e^{2}, b, c$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_3^3:(C_3\times S_4)$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_6^2.S_3^3.C_2$ |
| $\operatorname{Aut}(H)$ | $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| $\operatorname{res}(S)$ | $S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(81\)\(\medspace = 3^{4} \) |
| $W$ | $C_3^2$, of order \(9\)\(\medspace = 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $72$ |
| Number of conjugacy classes in this autjugacy class | $9$ |
| Möbius function | $0$ |
| Projective image | $C_3^3:(C_3\times S_4)$ |