Properties

Label 192.1475.6.a1
Order $ 2^{5} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times Q_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^2\times \GL(2,3)$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3:S_4^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^6:(S_3\times S_4)$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times \GL(2,3)$
Complements:$S_3$
Minimal over-subgroups:$C_2^2\times \SL(2,3)$$C_2^2\times \SD_{16}$
Maximal under-subgroups:$C_2\times Q_8$$C_2\times Q_8$$C_2^2\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$S_4$