Properties

Label 192.1475.1.a1
Order $ 2^{6} \cdot 3 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \GL(2,3)$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 2 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^2\times \GL(2,3)$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3:S_4^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^3:S_4^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times \GL(2,3)$
Complements:$C_1$
Maximal under-subgroups:$C_2\times \GL(2,3)$$C_2^2\times \SL(2,3)$$C_2^2\times \SD_{16}$$C_2^2\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$S_4$