Properties

Label 1848.17.22.c1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_7$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ab^{129}, b^{88}, c, b^{66}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{154}:C_6$
Order: \(1848\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Exponent: \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{77}.C_{30}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{14}:C_6$
Normal closure:$C_{154}:C_6$
Core:$C_7:C_6$
Minimal over-subgroups:$C_{154}:C_6$$D_{14}:C_6$
Maximal under-subgroups:$C_7:C_6$$F_7$$D_{14}$$C_2\times C_6$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$D_{11}\times F_7$