Properties

Label 17496.no.4.d1
Order $ 2 \cdot 3^{7} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(4374\)\(\medspace = 2 \cdot 3^{7} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $a^{3}e^{9}f^{2}, de^{14}, cd^{2}e^{12}, a^{2}, b^{2}ce^{6}, e^{6}, d, f$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^4.S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^2\times S_3$
$\operatorname{Aut}(H)$ not computed
$W$$C_{13}:F_{13}$, of order \(2028\)\(\medspace = 2^{2} \cdot 3 \cdot 13^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^4.S_3^3$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_3^3.C_3^4.C_2^2$$C_3\times C_3^3.C_3^3.C_2^2$$C_3^3.C_3^4.C_2^2$
Maximal under-subgroups:$C_3\times C_3^4.C_3^2$$(C_3^2\times \He_3).S_3$$C_9:C_3^3:S_3$$C_3^5:S_3$$C_3^5.S_3$$C_3^5.S_3$$C_9:C_3^3:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_3^4.S_3^3$