Properties

Label 172800.n.180.BO
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{10}\times S_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,5)(3,4), (2,4)(3,5)(6,10)(7,9)(11,13,14), (6,8,10,7,9), (2,3)(4,5), (1,13)(2,4)(3,5)(11,14), (1,11)(2,4)(3,5)(13,14), (2,5)(3,4)(11,13), (1,11,13)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $A_4\times S_5^2$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5\times S_4\times C_2^2:S_4$
$W$$C_3\times F_5\times S_4$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$A_4\times F_5\times S_4$
Normal closure:$C_2^2\times S_5^2$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times S_4\times A_5$$C_2\times D_{10}\times S_5$$A_4^2:D_{10}$$C_2^2\times F_5\times S_4$
Maximal under-subgroups:$D_{10}\times S_4$$D_{10}\times S_4$$D_{10}\times S_4$$D_{10}\times S_4$$C_2\times C_{10}\times S_4$$C_2^3:D_{30}$$C_2\times A_4\times D_{10}$$C_{20}:C_2^4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4\times S_5^2$